A Circular OCEAN

Recycling and reuse of discarded waste fishing nets in building materials

Ida Bertelsen ARTEK, DTU Civil Engineering

ARTEK Event, Sisimiut April 12th - 14th 2016

1

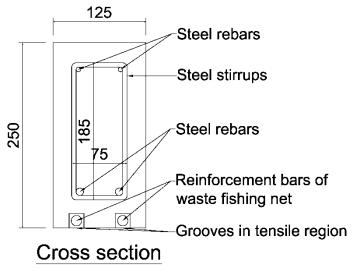
EUROPEAN UNION

Investing in your future European Regional Development Fund

Motivation

- Reuse of waste fishing nets in remote areas within the NPA region
- Use of local resources and waste materials to improve construction materials
- Create local business opportunities within the NPA region

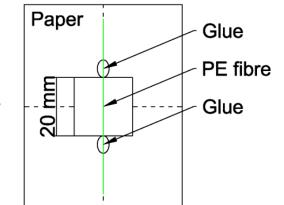
2

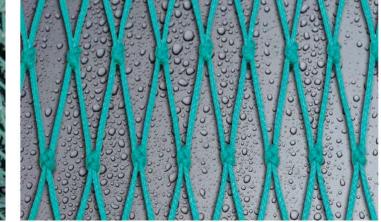

Introduction – Fishing nets

- Large fishing industries
- Great amounts of non-biodegradable waste fishing gear
- Fishing nets are commonly made of Polyethylene, Nylon (Polyamide) or Polyester
- Fishing nets as reinforcement of concrete structures
- Method for strengthening of existing concrete structures and prolonging of life-time: Near-surface mounted reinforcement (NSMR)

Introduction – Concrete structures

- Steel reinforcement are used in traditional concrete structures
- Fishing net lines have a high tensile strength and are non-corrosive
- Synthetic reinforcement bars of fishing nets. Commonly made of carbon, glass or aramid fibres
- Near-surface mounted reinforcement (NSMR) method is used to strengthen existing concrete structures
 125

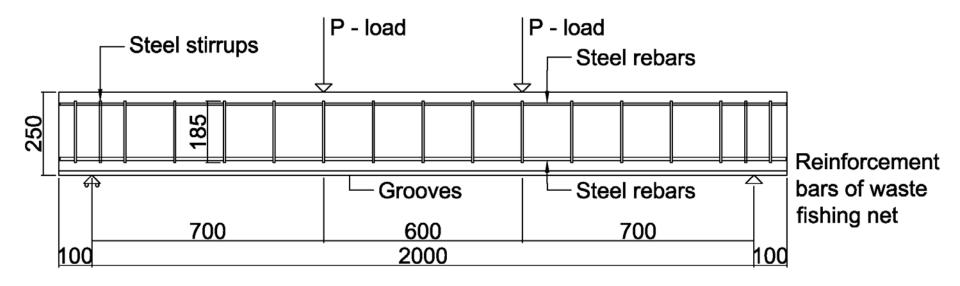




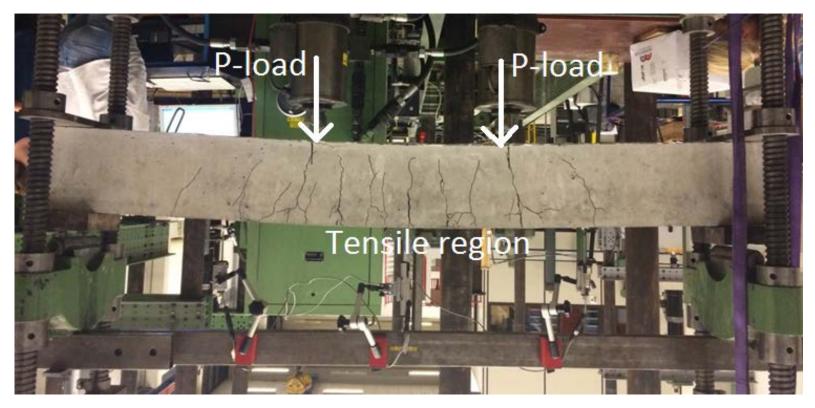
Materials and methods – Single fibres

- Tensile testing of single fibres of PE fishing nets
- Comparison of new and waste fibres
- Immersion of fibres in alkaline solution and SEM analysis
- Casting of concrete beams
- Flexural bending test of concrete beams

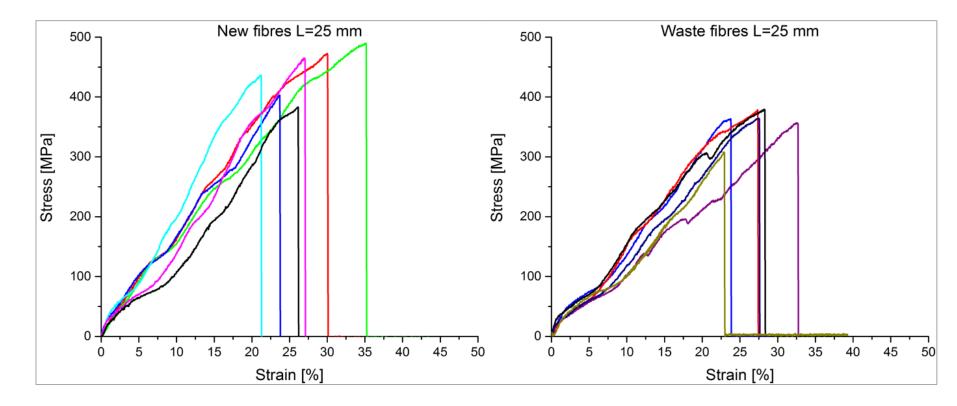
Materials and methods – Fishing net bars



Materials and methods – Concrete beam


- Concrete beam reinforced with:
- Steel rebars and bars of fishing net lines (longitudinal)
- Steel stirrups (Vertical)
- Load application, P [kN]

Materials and methods – Concrete beam

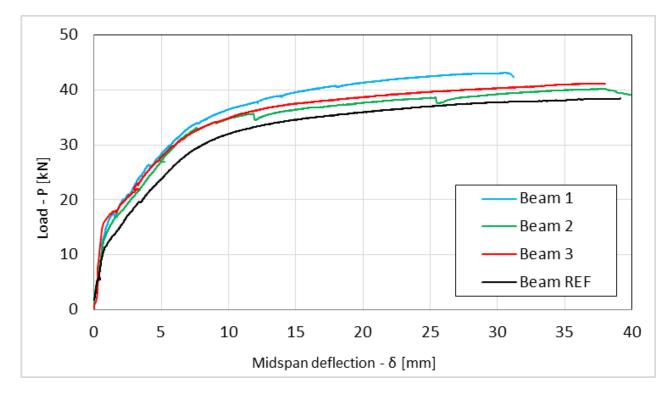

 Flexural bending of concrete beams reinforced with steel rebars, steel stirrups and NSMR bars of fishing nets

Results - Tensile testing of fibres

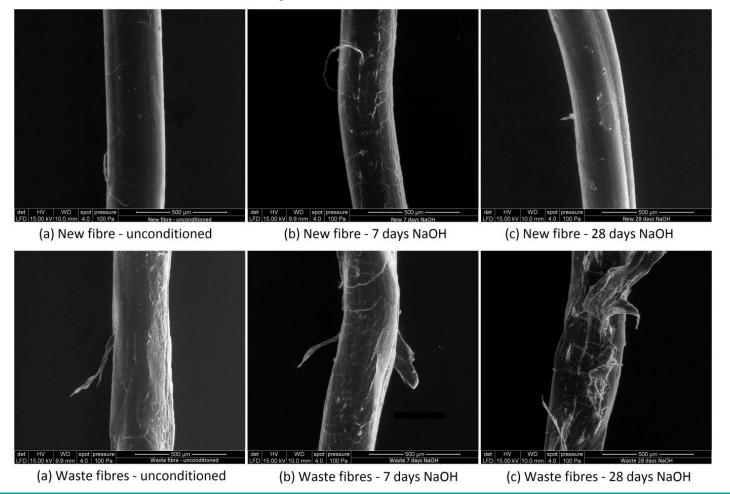
Determination of tensile properties: Stress-strain relationship

Results – Tensile testing of fibres

- Tensile strength is 20 % higher for new fibres compared to waste fibres
- Comparison of tensile properties with other types of reinforcement bars


Tensile properties of Waste fibres and New fibres - Unconditioned											
Fibre length	Peak strength		Tensile strength		E-modulus		Peak strain				
l _o = 20, 25, 30 mm	F _{max} [N]		σ _t [MPa]		E [GPa]		ε _t [%]				
Waste fibres	24.5	(3.9)	346	(55)	1.3	-	29	(4.6)			
New fibres	29.7	(2.7)	420	(39)	1.4	-	29	(4.7)			
Mean values. Values in parenthesis (x) is standard deviation											

Comparison of tensile properties with other FRP bars [ACI 440, 2006]										
	Fishing net	Steel bar	Glass FRP	Carbon FRP	Aramid FRP					
Tensile strength [Mpa]	350-420	276-520	480-1600	600-3700	1700-2540					
Elastic modulus [GPa]	1.2-1.4	200	35-50	120-580	40-125					
Rupture strain [%]	25-30	6 - 12	1.2-3.1	0.5-1.7	1.9-4.4					


Results – Flexural bending tests

- Reference beam (REF) failed at lower loads
- Concrete failed before reinforcement bars of waste fishing nets

Results – SEM Analysis

ARCTIC TECHNOLOGY CENTRE

circular

ocean

DTU

Discussion and Conclusion

- Alternative to epoxy resin for casting of FRP bars
- Tensile strength of fishing nets corresponds well with other materials used as reinforcement bars for Near-surface mounted reinforcement method
- Very low stiffness (E-modulus) results in large strains
- Larger flexural strength of concrete beams reinforced both steel- and fishing net reinforcement
- Other types of fishing nets might be more appropriate (higher stiffness)

Acknowledgement

 Thanks to Northern Periphery and Arctic Programme for financial support, and to master students Nina Sigvardsen and Amanda Bonnerup

Thank you for your attention

