

Reuse of Waste Fishing Nets in Construction Materials

Ida Bertelsen Lisbeth M. Ottosen ARTEK, DTU Civil Engineering

Circular Ocean Conference, Ålesund, Norway September 1st - 2nd, 2016

Presentation outline

- The project "Circular Ocean"
- Motivation
- Possible applications
- Methods
- Results
- Conclusion

Circular Ocean

ARTEK's role in Circular Ocean:

- Focus on the construction industry
- Methodology for properties of fishing nets
- Development of new applications
- Laboratory-scale testing of new solutions
- Pilot-scale testing in the NPA region

Motivation

- Prevent marine plastic litter in the NPA region
- Reuse local waste materials from the fishing industry
- Find a proper application for waste nets in the construction industry

Introduction - Fishing nets

- Fishing industry in the NPA region
- Nets made of high density polyethylene (HDPE)
- Degradation due to abrasion, mechanical load, UV-radiation
- Waste fishing nets are stored at the dumpsite

Introduction - Fishing nets

HDPE nettings from Greenland before use and after disposal

Waste nets

Possible applications – Fibre reinforcement

Why fibre reinforcing building materials?

- **Primary fibres**: Flexural toughness, Post-crack performance
- Secondary fibres: Crack resistance, Shrinkage cracking, Durability

Plastic waste materials used as reinforcement of construction materials

PET bottles, Textile carpet waste, Nylon fishing nets

Possible applications – Fibre reinforcement

Requirements for fibres as reinforcement

- Must be easily dispersed the mixture
- Must have suitable mechanical and bonding properties
- Must be durable in the environment of the material

Methods – Engineering properties of fibres

- Comparison of fibres from new and waste nets
- Mechanical properties (tensile test)
- Durability properties (immersion in 1M NaOH for 28 days)
- Physical properties (SEM)
- Casting of material samples

Methods – Tensile testing

Tensile testing of single fibres on displacement-controlled Instron:

Unconditioned/alkali-cured - new/waste fibres of HDPE

Results – Physical properties

- Fiber diameter: d=270-330 μm
- Very smooth fibre surface

Results - Mechanical properties

	Tensile		Tensile		Young's	
	stress	SD	strain	SD	modulus	SD
	σ[Mpa]	[-]	ε [%]	[-]	E [Mpa]	[-]
Unconditioned fibres						
New fibres	416	38.2	29.4	4.9	1454	293
Waste fibres	356	56.3	30.5	6.6	1199	218
NaOH-conditioned fibres						
New fibres	413	35.4	30.9	4.1	1351	138
Waste fibres	355	66.7	31.8	6.7	1127	125

Results - Durability properties

Immersion of fibres in alkaline solution (1M NaOH) for 7 and 28

New fibres

Waste fibres

(a) Waste fibres - unconditioned (b) Waste fibres - 7 days NaOH

(c) Waste fibres - 28 days NaOH

Comparison with other fibres

- Suitable tensile strength
- Low stiffness
- Durable in an alkaline environment
- Smooth surface poor bonding properties?

Next step:

- Mix fibres into material mixture such as mortar, gypsum or clay
- Test bonding properties in different materials
- Evaluate composite materials

Methods – Casting of material samples

Fibre reinforcement of mortar, gypsum or clay samples

Results – Material samples

Test setup for 3-points bending

Force – deflection diagram

Possible applications

- Bigger parts of nets as reinforcement
- Geotextile under road paved or unpaved
- Fibres in fired materials (bricks and tiles)
- Fire safety in concrete tunnels

Acknowledgement

This study was funded through the Northern Periphery and Arctic Programme, the European Union and the Technical University of Denmark.

EUROPEAN UNION

Investing in your future European Regional Development Fund

